Alexander Hay
alexanderhay2020@u.northwestern.edu
ME 469 - Machine Learning and Al in Robotics
Assignment #2 - Machine Learning
Algorithm: Neural Networks
Learning Aim: Motion Model
Input Vector: [t, X, y, 6, v, W]

Output Vector: [AXx, Ay, AO]

11/19/2019

Note: please refer to the readme.txt for specific attribute and function definitions.
Part A

The how and what of the assignment were determined in the following way. The how was already decided due to
personal interest in learning neural networks. Determining what was more difficult and required coordination with
Shangzhou Ye, my partner for the assignment, and ultimately decided to have the algorithm learn the change in
linear and angular displacement via the motion model.

Dataset 1 (dsl) was chosen because it contained the most data (longer collection time). The data was sorted by
timestamp and any gaps in the data caused by the sort was interpolated. The data was then split into three distinct
sets; a training set, a validation set, and a test set, in a 45/45/10 ratio. The training and test sets were manipulated
the most, while the validation set was set aside to validate once the network had been properly developed.

The motion model is borrowed from hw(O with some minor tweaks, such that rather than calculating the robot’s
new position it just calculates the difference:

A= *t Eq. 1
Ax =v * t* cos(0) Eq. 2
Ay =v *x t * sin(0) Eq. 3

Where A8 is the heading [rad], @ is angular velocity [rad/s], ¢ is time [s], v is linear velocity [m/s], Ax and Ay are
their respective displacements. The input for the algorithm should then include the odometry data. The
groundtruth data was included as a means for verification.

Neural nets are built on units called neurons, and for this exercise a special neuron called a perceptron is used.
Perceptrons are special in that they can represent fundamental logic functions: AND, OR, NAND, NOR. Though
a perceptron can’t represent XAND or XOR, layered perceptrons can, thus all logic functions can potentially be
built using a layered network structure.

Perceptrons take a vector of inputs [X,, X,, ..., X,] and calculate a linear combination of the inputs, then outputs a 1

or -1 based on a given threshold. To do that a weighted sum is calculated using the input vector and a set of
randomized weights:

Z(xow;) =xwy Hxw, T T xw, Eq. 4

Weights are [nxm] matrices, where n is the dimension of the input and m is the dimension of the output. The sum
is then passed through an activation function. In this case a sigmoid function is used to normalize the result:

1
1+e

6=— Eq. 5

Because the weights were randomly generated it’s almost assured that the output is inaccurate. Adjustments need
to be made to the weights. Adjustments are calculated by finding the error:

error = output c Eq. 6

expected

Then finally calculated by multiplying the error by the sigmoid derivative, which makes an adjustment that is
proportional to the size of the error:

6'=0c%*(1—0) Eq.7
adjustments = error * ¢' Eq. 8
w, =w, +X *adjustments Eq.9

These new weights wouldn’t have changed much, but over many iterations they converge to their proper values of
minimizing error. This method of adjusting the weights is called backpropagation.

To test the algorithm a small, simple sample set was used to provide easy-to-interpret results. The table below
shows this set:

Variable 1 Variable 2 Variable 3 Output
Input 1 0 0 1 0
Input 2 1 1 1 1
Input 3 1 0 1 1
Input 4 0 1 1 1

The system is that if variable 1 or variable 2 contained a 1, then the output will be a 1, ignoring whatever variable
3is.

perceptron.py demonstrates the algorithm and predicted output. Given the input array and initial weights adjusted
20,000" times, the predicted results are as follows:

Input: Starting Weights: Weights after training: Output:

[[001] [[4.17022005e-01] [[9.38838295] [[0.0114106]

[111] [7.20324493e-01] [9.38838305] [0.99999939]

[101] [1.14374817e-04]] [-4.46176172]] [0.99280105]

[011]] [0.99280105]]

*this is a tunable parameter

Given an infinite amount of time and iterations the output would eventually converge to O or 1. Instead, the
algorithm iterates. More iterations means a more precise convergence but at the cost of computational speed. The
non-binary property of the sigmoid function produces results very close to 0 or 1. Also of note are the adjusted
weights. The algorithm clearly recognized that the first and second column were important while the third column
was to be ignored. What’s also interesting is that the algorithm placed nearly identical weights for the first and
second columns, effectively creating an OR logic gate.

Part B

A test was developed with the same scale in mind as the perceptron example, one that can be done by hand. The
first 10 entries of the training data (input.tsv) were taken and passed through the motion model, generating a
[10x3] matrix of [Ax, Ay, AO] entries. Using this method we should expect the algorithm to ignore the x and y
position data since it is not used in calculating the displacement.

run_single.py executes the neural network and displays the initial and final weights. Executing run.py showed that
the weights didn’t change. This suggests that the data is not linearly related or separable (which is true). For the
sake of confirmation the network was executed with the entire training input set and produced the same,
unchanged weights.

Starting Weights:

[[4.17022005e-01
[3.02332573e-01
[1.86260211e-01
[5.38816734e-01
[2.04452250e-01
[6.70467510e-01

7.20324493e-01
1.46755891e-01
3.45560727e-01
4.19194514e-01
8.78117436e-01
4.17304802e-01

Weights after training:

[[4.17022005e-01
[3.02332573e-01
[1.86260211e-01
[5.38816734e-01
[2.04452250e-01
[6.70467510e-01

7.20324493e-01
1.46755891e-01
3.45560727e-01
4.19194514e-01
8.78117436e-01
4.17304802e-01

1.14374817e-04]
9.23385948¢-02]
3.96767474e-01]
6.85219500e-01]
2.73875932e-02]
5.58689828e-01]]

1.14374817e-04]
9.23385948¢-02]
3.96767474e-01]
6.85219500e-01]
2.73875932e-02]
5.58689828e-01]]

Furthering confirmation, a [10x6] array was created of random integers, similar to the 10 entries of training data.
Executing run.py with that random integer set also produced unchanging weights, suggesting that the data itself is
not the cause.

The strength of perceptrons lies in their ability to be constructed together to create a computational network.
Executing run.py shows the intermediate weights, the synapses, between perceptron (neuron). Each weight
linearly correlates what the algorithm thinks the relationship is between an input node to an output node. This
suggests that more layers would create more connections, creating more computationally complex connections.
This comes at great computing cost, so parameters such as the number of layers, number of iterations to converge,
and activation function need to be considered to ensure a reasonable runtime. In this exercise, the algorithm has 2
layers and iterates 20,000 times.

Looking at the results run.py uses the same array of random integers as before. Here are the results

Training Output:

[[O. -0. 5.]

[478580264 34.67125745 14.]
[-18.30202138 -21.19046987 4.]
[31.66389468 27.59343715 7.]

[0. 0. 0.]
[-3.83410482 5.85658947 21.]
[0. -0. 2.]

[1.91432105 13.86850298 14.]
[46.71650819 30.87989415 32.]
[-0. -0. 10. 1]

Layer 1 Weights:

[[-0.40213978 0.16877824 0.13182405 0.22787664 0.91307131 -0.47804204]
[-0.53796916 0.06689698 0.89987628 -0.01388081 0.08120102 0.53097021]
[-0.90930854 -0.72006776 0.58480717 -0.94039728 0.76625095 0.08157638]
[-0.10403964 0.78427174 -0.24483132 0.07684939 0.30459776 -0.27747796]
[0.14201712 0.27567297 -0.74737023 0.38040918 0.2954988 -0.29212182]

[0.52646611 -0.28693655 0.50557671 0.76268366 -0.97666161 -0.00378186]]

Layer 2 Weights:

[[-0.85241598 0.57390295 -0.87186534]
[-0.28937928 0.8836739 -0.24039343]

[0.52584015 0.54319 -0.39727901]
[0.54547829 -0.69414035 0.15726786]
[-0.98198401 0.41808504 -0.05871838]
[0.52918514 -0.06521463 -0.4619979]]

Output:
[[1. 1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.

I T o S e O N N U

— e e e e ek e
f—"

Layer 1 Weights:

[[-1.15662913 1.03703291 6.56835633 0.72820868 1.24721281 -3.30242924]
[-0.68297684 -0.23871361 1.27933284 0.07582685 0.07182823 -2.39737598]
[-2.14530402 0.45607781 5.06619345 -0.05015285 1.51724076 -1.91836265]
[-0.8294075 1.28595832 3.95880621 1.74195555 0.70507952 -2.68959217]
[-2.03651036 3.33831469 3.43890351 1.74942975 1.52159175 -1.1674609]

[-1.61358575 2.08319982 2.91258875 0.80069782 0.28454031 -1.62655026]]

Layer 2 Weights:

[[-0.66905998 2.17437721 0.71710193]
[13.6305082 13.84978578 20.56721486]
[12.17231422 14.61489307 22.30583226]
[12.29455663 12.44736352 18.50306279]
[12.6666522 15.02003651 25.14292233]
[0.43028128 0.28996622 3.12892022]]

Crude, but it’s clear that adding another layer addressed the issue of the weights not changing. Here they change
as expected. However the output as it is, being all ones, is unexpected. A few things may address this; adding
another layer may provide more insight for the algorithm into any hidden structures within the data. An additional
layer can provide another “step” the algorithm can use to determine a function between the input and output
data.Another consideration is that the data itself could be improper for the purpose of the algorithm, but that
seems unlikely as the model is relatively simple.

References:
Arnx, Arthur. “First Neural Network for Beginners Explained (with Code).” Medium, Towards Data Science, 11
Aug. 2019, towardsdatascience.com/first-neural-network-for-beginners-explained-with-code-4cfd37e06eaf.

“Artificial Neural Networks.” Machine Learning, by Thomas M. Mitchell, McGraw-Hill, 1997, pp. 81-112.

Fried, Charles. “Let's Code a Neural Network From Scratch.” Medium, TypeMe, 6 Apr. 2017,
medium.com/typeme/lets-code-a-neural-network-from-scratch-part-1-24f0a30d7d62.

Spencer-Harper, Milo, director. Create a Simple Neural Network in Python from Scratch. YouTube, PolyCode, 31
Mar. 2018, www.youtube.com/watch?v=kft1 AJOWVDk.

Spencer-Harper, Milo. “How to Build a Simple Neural Network in 9 Lines of Python Code.” Medium, 8 Apr.
2019,
medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-cod
e-cc8f23647cal.

Trask, Andrew. “A Neural Network in 11 Lines of Python (Part 1).” A Neural Network in 11 Lines of Python
(Part 1), Github.io, 12 June 2015, iamtrask.github.i0/2015/07/12/basic-python-network/.

